4.1 Inverse Functions

Vertical Line Test: If each vertical line intersects the graph at only one point, then the graph is the graph of a function.

The Horizontal Line Test for Inverse Functions

The function f has an inverse that is a function, f^{-1}, if there is no horizontal line that intersects the graph of the function f at more than one point.

$$
f^{-1} \text { reads " } f \text { inverse." }
$$

The graphs do not pass the horizontal line test. These are not the graphs of functions with inverse functions.

One-to-One Function: a function in which no two different ordered pairs have the same second component. (The y-values are never repeated for other x-values.) ONLY one-to-one functions have inverse functions.

Functions that are inverses actually "undo" each other's results.

Ex. A relation in x and y is given. Determine if the relation defines y as a one-to-one function of x.
(a) $\{(-14,1),(-2,3),(7,4),(-9,-2)\}$
(b)

\boldsymbol{X}	\boldsymbol{Y}
12.5	3.21
5.75	-4.5
2.34	7.25
-12.7	3.21

Definition of the Inverse of a Function

If f and g are two functions such that $(f \circ g)(x)=x$ and $(g \circ f)(x)=x$, then the function g is the inverse of the function f and is denoted by f^{-1}.
Thus, $\left(f \circ f^{-1}\right)(x)=x$ and $\left(f^{-1} \circ f\right)(x)=x$. The domain of \boldsymbol{f} is equal to the range of f^{-1}, and vice versa.

Ex. Using composition, verify that $f(x)$ and $g(x)$ are inverse functions.
(a) $f(x)=\frac{2}{x-5}$ and $g(x)=\frac{2}{x}+5$
(b) $f(x)=4 x+9$ and $g(x)=\frac{x-9}{4}$

If the function f is the set of ordered pairs (x, y), then the inverse of f is the set of ordered pairs (y, x).
The graph of f^{-1} is a reflection of the graph of f about the line $y=x$.

Finding the Inverse of a Function:

1.) Replace $f(x)$ with y.
2.) Interchange x and y.
3.) Solve for y.
4.) Replace y by $f^{-1}(x)$.

Ex. The given functions are all one-to-one.
i) Find the inverse function.
ii) Using composition to verify your equation is correct.
(a) (\#42) $g(x)=\frac{8-x}{3}$
(b) $f(x)=(x-1)^{3}$

Ex. (\#56) Given $f(x)=\sqrt{x-2}$.
i) Use the graph of f, is f a one-to-one function?
ii) Use interval notation to write the domain and the range of f.

Domain of f : \qquad Range of f : \qquad
iii) Find $f^{-1}(x)$.

Note: We need to restrict the domain, so that it is a one-to-one function.
iv) Graph f and f^{-1} in the same rectangular coordinate system.

v) Use interval notation to write the domain and the range of f^{-1}.

Domain of f^{-1} : \qquad Range of f^{-1} : \qquad

Ex. Use the graph of f to draw the graph of its inverse function.

