4.1 Inverse Functions

Vertical Line Test: If each vertical line intersects the graph at only one point, then the graph is the graph of a function.

The Horizontal Line Test for Inverse Functions

The function f has an inverse that is a function, f^{-1} , if there is <u>no horizontal line</u> that <u>intersects</u> the graph of the function f at more than one point.

 f^{-1} reads "f inverse."

The graphs do not pass the horizontal line test. These are not the graphs of functions with inverse functions.

One-to-One Function: a function in which no two different ordered pairs have the same second component. (The *y*-values are never repeated for other *x*-values.) **ONLY one-to-one functions have inverse functions.**

Functions that are inverses actually "undo" each other's results.

Ex. A relation in *x* and *y* is given. Determine if the relation defines *y* as a one-to-one function of *x*.

(a) $\{(-14,1), (-2,3), (7,4), (-9,-2)\}$	
---	--

(b)	X	Y
(0)	12.5	3.21
	5.75	-4.5
	2.34	7.25
	-12.7	3.21

Definition of the Inverse of a Function

If f and g are two functions such that $(f \circ g)(x) = x$ and $(g \circ f)(x) = x$, then the function g is the inverse of the function f and is denoted by f^{-1} . Thus, $(f \circ f^{-1})(x) = x$ and $(f^{-1} \circ f)(x) = x$. The domain of f is equal to the range of f^{-1} , and vice versa.

Ex. Using composition, verify that f(x) and g(x) are inverse functions.

(a)
$$f(x) = \frac{2}{x-5}$$
 and $g(x) = \frac{2}{x}+5$

(b)
$$f(x) = 4x + 9$$
 and $g(x) = \frac{x-9}{4}$

If the function f is the set of ordered pairs (x, y), then the inverse of f is the set of ordered pairs (y, x).

The graph of f^{-1} is a <u>reflection</u> of the graph of f about the line y = x.

F16-CA-Miller Sec. 4.1

Finding the Inverse of a Function:

- 1.) Replace f(x) with y.
- 2.) Interchange *x* and *y*.
- 3.) Solve for *y*.
- 4.) Replace *y* by $f^{-1}(x)$.

Ex. The given functions are all one-to-one.

- i) Find the inverse function.
- ii) Using composition to verify your equation is correct.

(a) (#42)
$$g(x) = \frac{8-x}{3}$$

(b)
$$f(x) = (x-1)^3$$

Ex. (#56) Given $f(x) = \sqrt{x-2}$.

- i) Use the graph of f, is f a one-to-one function?
- ii) Use interval notation to write the domain and the range of f.

Domain of f:

iii)Find $f^{-1}(x)$.

Range of *f* : _____

Note: We need to restrict the domain, so that it is a one-to-one function.

iv) Graph f and f^{-1} in the same rectangular coordinate system.

v) Use interval notation to write the domain and the range of f^{-1} .

Domain of f^{-1} :

Range of f^{-1} :

Ex. Use the graph of f to draw the graph of its inverse function.

